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Research at a Glance
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How to design algorithms—quantum & classical—that push the limits of computation 

and deliver real impact?

▪ Quantum algorithms that provide advantages over classical 

methods while accommodating quantum hardware constraints

▪ Fast, provable solvers for large-scale optimization problems

▪ Theoretical foundations and algorithmic improvements in

practical domains

I am always looking for talented people joining the group!



Today’s plan
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• Logistics

• Philosophy

• A motivating example



Grading
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• Problem sets (15%)

• Participation (10%)

• Scribing (10%)

• Take-home midterm exam (25%)

• Final project (40%)



Problem sets
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• ∼ 3 problem sets

• You are encouraged to collaborate on homework. However, you must write up your own solutions. You 

should also state the names of those you collaborated with on the first page of your submission.

• Gen-AI rule: 

In this course, you shall give credit to AI tools whenever used, even if only to generate ideas 

rather than usable text or illustrations.



Gen-AI rule
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• Allowed:

• Not allowed:



Participation
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• You should attend every lecture unless you have an unavoidable conflict. 

• Don’t hesitate to stop me at any point to ask questions.



Scribing
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• Signup sheet will be posted on Brightspace

• You need to scribe notes for two lectures

• The LaTeX template is provided in the course website



Midterm exam
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To fulfill the PhD degree requirement, we have a take-home exam (25%).

• The exam time will be announced at least two weeks in advance

• The use of internet or locally hosted AI tools is strictly prohibited



Final project
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• Either original research or insightful exposition of existing work

• Written report + Oral presentation

• Suggested topics/readings will be provided following the midterm exam; however, you may also propose 

alternative topics for approval.

• I strongly encourage each of you to schedule a meeting with me to discuss your project ideas.



Today’s plan
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• Logistics

• Philosophy

• A motivating example
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This course: classical and quantum algorithmic foundations for data science with provable 

guarantees.

Data science is an interdisciplinary academic field that uses statistics, scientific computing, scientific 

methods, processing, scientific visualization, algorithms and systems to extract or extrapolate knowledge 

from potentially noisy, structured, or unstructured data.

Vasant Dhar (2013)

Now that there is AI, is data science still needed? Or shall we declare it dead?

Short answer: No!

Data Science Isn’t Dying — It’s Evolving: How AI 
Is Reshaping the Role

https://medium.com/data-science-collective/data-science-is-dead-again-why-
the-role-keeps-evolving-not-disappearing-21ac8586a22a



Datasets are the foundation of progress in AI
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For text:

• GPT-1 (2018): 3 B Tokens

• GPT-2 (2019): 30 B Tokens

• GPT-3 (2020): 300 B Tokens

• GPT-4 (2023): 3000 B Tokens (?)

For images:

• ImageNet (2009): 1 Million images

• LAION-5B (2022): 5 Billion Images

1000x growth in 5 years

5000x growth in 5 years

Slides from Alex Dimakis’s talk: https://www.youtube.com/watch?v=ba-aqPF6xuw 



ML Discoveries enabled by datasets
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MNIST (1994)
Convolutional 

neural networks

CIFAR-10 (2009)
Training on GPUs

ImageNet (2012)
Deep training 

resurgence, ResNets, 
transfer learning, etc.

WebImageText (2021)
Zero-shot classification (CLIP), 
text-guided image generation 

(DALL-E)

Slides from Alex Dimakis’s talk: https://www.youtube.com/watch?v=ba-aqPF6xuw 



This class is
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• A journey that we will explore together how to think algorithmically in data science

→ Algorithms

→ Hardness

→ Modeling

• A theory course and therefore mainly contains proofs

• NOT a course about the algorithms/techniques for immediate practical deployment (e.g., Transformer, 

chain-of-thought, MoE,…)

• NOT a substitution for CS59300-IQC Intro to Quantum Computing (though we do not assume any 

background knowledge in quantum)



Think algorithmically in data science - Algorithms
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Goal: More efficient ways to extract knowledge from data (classically or quantumly)

• However, big gap between what’s possible in practice and what we can prove theorems about.

Our approaches:

• Design and rigorously analyze algorithms 

• Develop theoretical frameworks/meta-algorithms that could become practically useful heuristics

• Identify “hidden levers” from practical heuristics and inspire the theoretical studies



Think algorithmically in data science - Hardness
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We want to understand when a (heuristic) algorithm cannot work. 

• Proving worst-case lower bounds is the most common approach

• However, almost all the optimization problems that arise in modern machine learning are 

computationally intractable

• Go beyond worst-case analysis (average-case hardness and smoothed analysis)

• What factor makes the problem hard?

Easy
polynomial-time 

algorithms exist

Hard
only inefficient 

algorithms exist

Impossible
statistically 

unsolvable



Think algorithmically in data science - Modeling
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There are many expressive models for describing the world around us:

• Graphical models

• Mixture models

• Markovian processes

• Linear dynamical systems

• Quantum circuits

• Local Hamiltonians

• Dissipative processes (open quantum systems)

• …

A model is only as good as our ability to use it!

• Can rigorously describe what algorithms in practice can solve and what cannot

• Can capture the key properties/structures in the data that make the problem “easy”

• Does not “overfitting” to artificial assumptions



Today’s plan
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• Logistics

• Philosophy

• A motivating example: Quantum supremacy experiments
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A quantum computer is a machine that uses the principles 
of Quantum Mechanics to perform computations.

Slides adapted from Scott Aaronson’s talk



Quantum Mechanics
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“Probability theory with minus signs”

𝑝1

𝑝 = 𝑝1 + 𝑝2

𝑝2

Slides adapted from Scott Aaronson’s talk



Quantum Mechanics
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“Probability theory with minus signs”

𝛼1

𝛼 = 𝛼1 + 𝛼2

𝛼2
𝑝 = |𝛼|2

= ½

= −½

=  0

=  0

Amplitude

Slides adapted from Scott Aaronson’s talk
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A quantum computer is made not of bits but of qubits, which can be in superpositions of the 0 and 1 states: 

that is, they have an amplitude to be 0 and an amplitude to be 1:

𝛼 0 + 𝛽 1
2 qubits   4 amplitudes (for 00, 01, 10, and 11)

3 qubits   8 amplitudes

50 qubits  250  quadrillion amplitudes

1000 qubits  more amplitudes than fit in visible universe

Makes Nature very hard to simulate on conventional computers

Feynman, Deutsch 1980s: If Nature gives you a lemon, make lemonade!  (I.e., quantum computers)

A superposition of Feynmans

Slides adapted from Scott Aaronson and Lin Lin



The development of quantum computers
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2001

15 was factored 

using NMR

2011

D-Wave One 

Quantum annealer

Trapped ion

2017

Superconducting

2019

Google supremacy: 

RCS (53-qubit)

2020

USTC supremacy: 

RCS (60-qubit)

USTC supremacy: 

GBS (76 photons) 

2021

2022

Xanadu supremacy: 

GBS (219 photons) 

2023

QEC with 

neutral atoms

2024

Google’s Willow

1960s

1981

Sci-Fi Toy devices Supremacy Fault-tolerance
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Popularizers beware:
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A quantum computer is NOT like a massively-parallel classical computer!

Exponentially many 
possible answers, but you 
only get to observe one of 

them

Any hope for a speedup rides on 
choreographing an interference 

pattern that boosts the amplitude of 
the right answer

+1 + 1 + 1 + 1 +1 − 1 + 𝑖 − 𝑖 

Right answer Wrong answer



1. Breaking Current Public-

Key Cryptography

So, what are the main known DREAM applications 
of QCs?
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2. Simulating Quantum 
Physics and Chemistry

3. Uhh, more hopefully?

Requires fault-tolerance

Post-quantum crypto is a viable 

response

Still the best known “killer app” Looks like mostly modest 

speedups + 90% hype but who 

knows?

Grover,
HHL, 

QAOA

Slides adapted from Scott Aaronson’s talk



REALITY:  “Quantum Supremacy” demonstrated over the 
past 6 years 

August 28, 2025 28

BosonSampling
(Aaronson-Arkhipov 2011, ~100-photon 

experiments by USTC team 2020, Xanadu 2022)

Random Circuit Sampling
(53-qubit experiment by Google 2019, then 103 

qubits in 2024; also USTC)
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Quantum supremacy: quantum computers can perform certain (can be arbitrarily contrived) tasks much 

more efficient than classical computers

Quantum advantages: quantum computer is faster than classical computer on a useful task

The latter half of the course will introduce potential approaches toward realizing quantum advantages



What exactly did Google & USTC do? 
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• 𝑛 = 53 qubits and ~20 layers of gates in the circuit (randomly chosen)

• ~40 microseconds per sample (𝑠𝑖 ∈ 0,1 53)

• ~3 mins for millions of samples 𝑠1, 𝑠2, … , 𝑠𝐾

• But how do we check whether 𝑠1, … , 𝑠𝐾  were actually sampled from a 

QC? 

Linear Cross-Entropy Benchmark:

LXEB ≔
2𝑛

𝐾
෍

𝑖

Pr the circuit 𝐶 outputs 𝑠𝑖 ≡
2𝑛

𝐾
෍

𝑖

𝑠𝑖 𝐶 0𝑛 2 

Generating 𝑠𝑖 uniformly at 
random would yield LXEB ≈ 1

Sampling with an ideal QC would yield 
LXEB ≈ 2, due to quantum inferences 
boosting the probabilities of some 𝑠𝑖’s 

over others

Google’s result: 
LXEB ≈ 1.002

Random circuit sampling (RCS)

LXEB



Classical spoofing of RCS in theory: is there a ∼ 2𝑛 barrier?
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Problem (Linear Cross-Entropy Heavy Output Generation, XHOG).

Given the classical description of a quantum circuit 𝐶, generate 𝐾 distinct samples s1, … , 𝑠𝐾 ∈ 0,1 𝑛 such 

that LXEB 𝑠𝑖 𝑖∈ 𝐾 , 𝐶 ≥ 𝑏, where 𝑏 ∈ 1, 2 .

A quantum circuit can be described as a sequence of matrix-vector products:

𝐶 0𝑛 = 𝑈𝑚 ⋅ 𝑈𝑚−1 ⋅ ⋯ ⋅ 𝑈3 ⋅ 𝑈2 ⋅ 𝑈1 ⋅ 0𝑛

This is called the “Schrödinger” algorithm for simulating a quantum circuit

• 𝒪 𝑚2𝑛  time and 𝒪 2𝑛  space

unit vector in ℂ2𝑛

quantum gates2𝑛-by-2𝑛 matrix 
 1 
0
0
0

00
01
10
11

unit vector in ℂ2𝑛

 𝑐00 
𝑐01
𝑐10

𝑐11

00
01
10
11

Pr 𝐶 outputs 0𝑛 = 0𝑛 𝐶 0𝑛 2

= 𝑐00
2



Classical spoofing of RCS in theory: is there a ∼ 2𝑛 
barrier?
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A quantum circuit can be described as a sequence of matrix-vector products:

𝐶 0𝑛 = 𝑈𝑚 ⋅ 𝑈𝑚−1 ⋅ ⋯ ⋅ 𝑈3 ⋅ 𝑈2 ⋅ 𝑈1 ⋅ 0𝑛

Feynman’s path integral:

Assume each 𝑈𝑖 is a 2-qubit gate (i.e., 4-sparse matrix)

0𝑛

Sparsity:     1

𝑈1

4

𝑈2

𝑈2

𝑈2

𝑈2

42

𝑈3

𝑈3

𝑈3

𝑈3

43

𝑈4

𝑈4

𝑈4

𝑈4

44

⋯ 𝑈𝑚

𝑈𝑚

𝑈𝑚

⋮

𝑈𝑚

𝑈𝑚

4𝑚

0𝑛

1



Classical spoofing of RCS in theory: is there a ∼ 2𝑛 
barrier?
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A quantum circuit can be described as a sequence of matrix-vector products:

𝐶 0𝑛 = 𝑈𝑚 ⋅ 𝑈𝑚−1 ⋅ ⋯ ⋅ 𝑈3 ⋅ 𝑈2 ⋅ 𝑈1 ⋅ 0𝑛

Feynman’s path integral:

0𝑛 𝐶 0𝑛 = 0𝑛 𝑈𝑚 ⋅ 𝑈𝑚−1 ⋅ ⋯ ⋅ 𝑈3 ⋅ 𝑈2 ⋅ 𝑈1 0𝑛

= 0𝑛 𝑈𝑚 ⋅ 𝐼 ⋅ 𝑈𝑚−1 ⋅ 𝐼 ⋅ ⋯ ⋅ 𝐼 ⋅ 𝑈3 ⋅ 𝐼 ⋅ 𝑈2 ⋅ 𝐼 ⋅ 𝑈1 0𝑛

= 0𝑛 𝑈𝑚 ⋅ ෍

𝑥𝑚−1∈ 0,1 𝑛

𝑥𝑚−1 𝑥𝑚−1 ⋅ 𝑈𝑚−1 ⋯ 𝑈2 ⋅ ෍

𝑥1∈ 0,1 𝑛

𝑥1 𝑥1 ⋅ 𝑈1 0𝑛

= ෍

𝑥1,…,𝑥𝑚−1∈ 0,1 𝑛

0𝑛 𝑈𝑚 𝑥𝑚−1 ⋅ 𝑥𝑚−1 𝑈𝑚−1 𝑥𝑚−2 ⋯ 𝑥2 𝑈2 𝑥1 ⋅ ⟨𝑥1 𝑈1 0𝑛⟩

• 𝒪 4𝑚  time and 𝒪 𝑚 + 𝑛  space

Assume each 𝑈𝑖 is a 2-qubit gate (i.e., 4-sparse matrix)

4𝑚 nonzero terms
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Well, the classical simulation of a quantum circuit seems to be hard. What about the XHOG problem? Can 

we generate high LXEB samples without computing the probabilities? 

Theorem (Aaronson-Chen 2017, Aaronson-Gunn 2019).

If there’s a classical algorithm to spoof Linear XEB in ≪ 2𝑛 time, then there’s also a fast classical 

algorithm that estimates a specific output probability like 0𝑛 𝐶 0𝑛 2, with slightly better 

variance than always guessing 2−𝑛.

Classical spoofing of RCS in theory: is there a ∼ 2𝑛 
barrier?

Classical Simulation Algorithm Time Memory

Schrödinger ~2𝑛 (𝑛 = #qubits) ~2𝑛

Feynman ~2𝑚 (𝑚 = #gates) Linear

Schrödinger-Feynman (Aaronson-Chen 2017) ~𝑑𝑛  (𝑑 = depth) Linear



Classical spoofing of RCS in theory: is there a ∼ 2𝑛 
barrier?
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Theorem (Aaronson-Chen 2017, Aaronson-Gunn 2019).

If there’s a classical algorithm to spoof Linear XEB in ≪ 2𝑛 time, then there’s also a fast classical 

algorithm that estimates a specific output probability like 0𝑛 𝐶 0𝑛 2, with slightly better 

variance than always guessing 2−𝑛.

Theorem (Bouland et al. 2021).

For a constant-depth random quantum circuit 𝐶, it is #P-hard to compute 

0𝑛 𝐶 0𝑛 2 ± 2−𝒪 𝑛 log 𝑛

• For a general random circuit, their hardness result hold with the robustness of exp −𝒪 𝑚 log 𝑚 , while 

the goal is to prove hardness for exp −𝑛  

𝑚 = 𝒪 𝑛𝑑



Classical Spoofing of RCS in Practice
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• IBM: Summit, the largest supercomputer currently on earth—which fills 2 basketball courts and has 250 
petabytes of hard disk—should be able to simulate Google’s 3-minute calculation in ~2.5 days, rather 
than the 10,000 years Google estimated

• Pan & Zhang, Liu et al.: Can spoof one sample extremely fast classically, 
using tensor networks (We will discuss it later in this course)

• Pan, Chen, & Zhang: even millions of samples, using a state-of-the-art supercomputer in 15 hours

• Zhao et al.: 3M samples using using 1432 GPUs in 86.4 seconds (faster than Google’s Sycamore which 
needs 200 seconds)



Classical Spoofing of RCS in Practice
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LaRose, Ryan. "A brief history of quantum vs classical computational advantage." arXiv preprint arXiv:2412.14703 (2024).

• All the results are heuristic approaches

• Mind the gap between the theoretical and practical results. What’s going wrong?



Noise makes classical simulation easier
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• Recall that Google’s result: LXEB≈ 1.002, while a perfect QC should be LXEB= 2.

• Zhou et al: The first classical spoofing result that directly consider the noisy quantum circuit model

➢ A heuristic tensor network algorithm using “low-

rank approximation”

➢ Intuition: treat truncation as analogue of noise in 

a QC



Noise makes classical simulation easier
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• Recall that Google’s result: LXEB≈ 1.002, while a perfect QC should be LXEB= 2.

• Zhou et al: The first classical spoofing result that directly consider the noisy quantum circuit model

• Aharonov et al: Theoretical result showing that the output distribution of a noisy random quantum 

circuit can be approximately sampled using a classical computer within 𝜖-TV distance in poly 𝑛, Τ1 𝜖  

time, under some assumptions.

0111100101
1010000111
0011100010
1100010101
0101101011

1101100101
1110100101
1011101011
1001011011
1010110100 poly 𝑀, 𝑛  time𝑀 samples

No statistical test can 

tell the difference



Noise makes classical simulation easier
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• Google in 2023: They conducted new supremacy experiments with 67 qubits, and experimentally 

demonstrated that the noise-induced phase transition in RCS

Good regime for 
supremacy

randomness from 𝑈



Recap
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Quantum supremacy experiments showcases the algorithmic lens on data science:

Physicists and engineers 
(a.k.a. QC builders) 
brought up a new 

problem

Practitioners developed 
many heuristics that are 

successful in practice

Theorists tried to understand when 
and why these heuristics work, and 

developed new algorithms with 
rigorous guarantees



Classical world Quantum world

Looking ahead
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• Tensor methods: tensor decompositions and 

applications

• Spectral estimation and super-resolution

• Sum-of-Squares (SoS)

• Semi-definite programming (SDP) solvers

• MCMC and diffusion model

• Quantum eigenvalue problems

• Quantum linear algebra

• Quantum sampling

• Quantum learning theory
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